Optimal estimation of a large-dimensional covariance matrix under Stein's loss

نویسندگان

  • Olivier Ledoit
  • Michael Wolf
چکیده

This paper revisits the methodology of Stein (1975, 1986) for estimating a covariance matrix in the setting where the number of variables can be of the same magnitude as the sample size. Stein proposed to keep the eigenvectors of the sample covariance matrix but to shrink the eigenvalues. By minimizing an unbiased estimator of risk, Stein derived an ‘optimal’ shrinkage transformation. Unfortunately, the resulting estimator has two pitfalls: the shrinkage transformation can change the ordering of the eigenvalues and even make some of them negative. Stein suggested an ad hoc isotonizing algorithm that post-processes the transformed eigenvalues and thereby fixes these problems. We offer an alternative solution by minimizing the limiting expression of the unbiased estimator of risk under large-dimensional asymptotics, rather than the finite-sample expression. Compared to the isotonized version of Stein’s estimator, our solution is theoretically more elegant and also delivers improved performance, as evidenced by Monte Carlo simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on Multiparameter Estimation in Truncated Power Series Distributions under the Stein's Loss

This comment is to show that Theorem3.3 of Dey and Chung (1991) (Multiparameter estimation intruncated power series distributions under the Stein's loss.emph{Commun. Statist.-Theory Meth.,} {bf 20}, 309-326) may giveus misleading results. Analytically and through simulation, weshow that the Theorem does not improve the given estimator.

متن کامل

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation

This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...

متن کامل

Minimax Estimation of Large Covariance Matrices under l1-Norm

Driven by a wide range of applications in high-dimensional data analysis, there has been significant recent interest in the estimation of large covariance matrices. In this paper, we consider optimal estimation of a covariance matrix as well as its inverse over several commonly used parameter spaces under the matrix l1 norm. Both minimax lower and upper bounds are derived. The lower bounds are ...

متن کامل

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed who...

متن کامل

A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013